Outoregressiewe bewegende gemiddelde fout prosesse (ARMA foute) en ander modelle wat lags van die dwaling terme betrek kan word beraam deur gebruik te maak van FIT state en gesimuleerde of voorspel deur gebruik te maak van LOS state. ARMA modelle vir die fout proses word dikwels gebruik vir modelle met autocorrelated residue. Die AR makro kan gebruik word om modelle met outoregressiewe fout prosesse spesifiseer. Die MA makro kan gebruik word om modelle spesifiseer met bewegende gemiddelde fout prosesse. Outoregressiewe Foute 'n model met die eerste-orde outoregressiewe foute, AR (1), het die vorm terwyl 'n AR (2) fout proses het die vorm en dies meer vir hoër-orde prosesse. Let daarop dat die e onafhanklik en identies verdeelde en het 'n verwagte waarde van 0. 'n Voorbeeld van 'n model met 'n AR (2) komponent is en dies meer vir hoër-orde prosesse. Byvoorbeeld, kan jy 'n eenvoudige lineêre regressiemodel met MA (2) skryf bewegende gemiddelde foute as waar Ma1 en Ma2 is die bewegende gemiddelde parameters. Let daarop dat RESID. Y outomaties word gedefinieer deur PROC model as die ZLAG funksie moet gebruik word vir MA modelle om die rekursie van die lags afgestomp. Dit verseker dat die vertraagde foute begin by nul in die lag priming fase en nie voort ontbrekende waardes wanneer-lag priming tydperk veranderlikes ontbreek, en dit verseker dat die toekomstige foute is nul eerder as vermis tydens simulasie of vooruitskatting. Vir meer besonderhede oor die lag funksies, sien die artikel Lag logika. Hierdie model geskryf met behulp van die MA makro is soos volg: Algemene vorm vir ARMA Models Die algemene ARMA (p, q) proses het die volgende vorm 'n ARMA (p, q) model kan gespesifiseer word soos volg: waar AR Ek en MA j verteenwoordig die outoregressiewe en bewegende gemiddelde parameters vir die verskillende lags. Jy kan enige name wat jy wil vir hierdie veranderlikes gebruik, en daar is baie soortgelyk maniere wat die spesifikasie kan geskryf word. Vektor ARMA prosesse kan ook beraam met PROC model. Konvergensie Probleme met ARMA Models ARMA modelle kan moeilik om te skat wees: Byvoorbeeld, kan 'n twee-veranderlike AR (1) proses vir die foute van die twee endogene veranderlikes Y1 en Y2 soos volg gespesifiseer word. As die parameter ramings is nie binne die toepaslike omvang, 'n bewegende gemiddelde modelle oorblywende terme groei eksponensieel. Die berekende residue vir latere waarnemings kan baie groot wees of kan oorloop. Dit kan gebeur óf omdat onbehoorlike beginspan waardes is gebruik of omdat die iterasies wegbeweeg van redelike waardes. Sorg moet gedra word in die keuse van beginspan waardes vir ARMA parameters. Begin waardes van 0.001 vir ARMA parameters gewoonlik werk as die model pas die data goed en die probleem is goed gekondisioneer. Let daarop dat 'n MA-model dikwels benader kan word deur 'n hoë-orde AR model, en omgekeerd. Dit kan lei tot 'n hoë collinearity in gemengde ARMA modelle, wat op sy beurt ernstige swak kondisionering in die berekeninge en onstabiliteit van die parameter ramings kan veroorsaak. As jy konvergensie probleme te hê, terwyl die skatte van 'n model met ARMA foute prosesse, probeer om te skat in stappe. In die eerste plek gebruik 'n geskikte verklaring aan net die strukturele parameters met die ARMA parameters gehou na nul (of om vooraf redelike raming indien beskikbaar) te skat. Volgende, gebruik 'n ander FIT verklaring slegs die ARMA parameters beraam, met behulp van die strukturele parameterwaardes van die eerste termyn. Sedert die waardes van die strukturele parameters is waarskynlik naby aan hul finale skattings te wees, kan die ARMA parameterberaming nou bymekaar. Ten slotte, gebruik 'n ander FIT verklaring aan gelyktydige skattings van al die parameters te produseer. Sedert die aanvanklike waardes van die parameters is nou waarskynlik baie naby aan hul finale gesamentlike skattings te wees, moet die skattings vinnig bymekaar as die model geskik is vir die data is. AR beginvoorwaardes Die aanvanklike lags van die fout terme van AR (p) modelle gemodelleer kan word in verskillende maniere. Die outoregressiewe fout begin metodes deur SAS / ETS prosedures is die volgende: voorwaardelike kleinste kwadrate (ARIMA en model prosedures) onvoorwaardelike kleinste kwadrate (AUTOREG, ARIMA, en model prosedures) die maksimum waarskynlikheid (AUTOREG, ARIMA, en model prosedures) Yule-Walker (AUTOREG prosedure net) Hildreth-Lu, wat (enigste model prosedure) die eerste p Waarnemings verwyder Sien Hoofstuk 8, die AUTOREG prosedure, vir 'n verduideliking en bespreking van die meriete van verskeie AR (p) begin metodes. Die CLS, ULS, ML, en HT initializations uitgevoer kan word deur PROC model. Vir AR (1) foute, kan hierdie initializations geproduseer, soos uiteengesit in Tabel 18.2. Hierdie metodes is ekwivalent in groot monsters. Table 18.2 Initializations Uitgevoer deur PROC Model: AR (1) FOUTE Die aanvanklike lags van die fout terme van MA (Q) modelle kan ook geskoei op verskillende maniere. Die volgende bewegende gemiddelde fout start-up paradigmas word ondersteun deur die ARIMA en model prosedures: onvoorwaardelike kleinstekwadrate voorwaardelike kleinstekwadrate die voorwaardelike kleinste kwadrate metode van beraming bewegende gemiddelde fout terme is nie optimaal omdat dit die aanloop probleem ignoreer. Dit verminder die doeltreffendheid van die skat, hoewel hulle onbevooroordeelde bly. Die aanvanklike uitgestel residue, die uitbreiding van voor die aanvang van die data, is veronderstel om 0, hul onvoorwaardelike verwagte waarde. Dit stel 'n verskil tussen hierdie residue en die algemene kleinstekwadrate residue vir die bewegende gemiddelde kovariansie, wat, in teenstelling met die outoregressiewe model, voortduur deur die datastel. Gewoonlik hierdie verskil konvergeer vinnig tot 0, maar vir byna noninvertible bewegende gemiddelde prosesse die konvergensie is baie stadig. Om hierdie probleem te verminder, moet jy baie data het, en die bewegende gemiddelde parameterberaming moet goed binne die omkeerbare reeks. Hierdie probleem reggestel kan word ten koste van die skryf van 'n meer komplekse program. Onvoorwaardelike kleinste kwadrate beramings vir die MA (1) proses kan geproduseer word deur die spesifiseer van die model soos volg: Moving-gemiddelde foute kan moeilik om te skat wees. Jy moet oorweeg om 'n AR (p) benadering tot die bewegende gemiddelde proses. 'N bewegende gemiddelde proses kan gewoonlik goed benader word deur 'n outoregressiewe proses as die data is nie stryk of differenced. Die AR Makro Die SAS makro AR genereer programmering state vir PROC model vir outoregressiemodelle. Die AR makro is deel van SAS / ETS sagteware, en geen spesiale opsies moet ingestel word om die makro gebruik. Die outoregressiewe proses toegepas kan word om die strukturele vergelyking foute of om die endogene reeks hulself. Die AR makro kan gebruik word vir die volgende tipes motor regressie: onbeperkte vector-motor regressie beperk vector-motor regressie Eenveranderlike motor regressie Om die foutterm van 'n vergelyking model as 'n outoregressiewe proses, gebruik die volgende stelling na die vergelyking: Byvoorbeeld, veronderstel dat Y is 'n lineêre funksie van x1, x2, en 'n AR (2) fout. Die oproepe na AR moet kom na al die vergelykings wat die proses van toepassing op: Jy sal hierdie model soos volg skryf. Die voorafgaande makro aanroeping, AR (y, 2), produseer die state getoon in die lys uitset in Figuur 18.58. Figuur 18.58 LYS Opsie Uitset vir 'n AR (2) Model Die pred voorafgegaan veranderlikes is tydelik program veranderlikes gebruik sodat die lags van die residue is die korrekte residue en nie dié geherdefinieer deur hierdie vergelyking. Let daarop dat hierdie is gelykstaande aan die state uitdruklik in die artikel Algemene Form vir ARMA Models geskryf. Jy kan ook die outoregressiewe parameters aan nul beperk by uitgesoekte lags. Byvoorbeeld, as jy outoregressiewe parameters wou by lags 1, 12, en 13, kan jy die volgende stellings gebruik: Hierdie state genereer die uitset in Figuur 18,59. Figuur 18,59 LYS Opsie Uitset vir 'n AR Model met lags op 1, 12, en 13 Die model Prosedure aanbieding van Saamgestel programkode Verklaring Geperste PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y pred. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - PREDy) yl12 ZLAG12 (y - PREDy) yl13 ZLAG13 (y - PREDy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Daar is variasies op die voorwaardelike kleinste kwadrate metode, afhangende van of waarnemings op die begin van die reeks word gebruik om op te warm die AR proses. By verstek, die AR voorwaardelike kleinste kwadrate metode gebruik al die waarnemings en aanvaar nulle vir die aanvanklike lags van outoregressiewe terme. Deur die gebruik van die opsie man, kan jy versoek dat AR gebruik die onvoorwaardelike kleinste kwadrate (ULS) of metode maksimum-waarskynlikheid (ML) plaas. Byvoorbeeld, is Besprekings van hierdie metodes wat in die artikel AR beginvoorwaardes. Deur die gebruik van die MCLS N opsie, kan jy versoek dat die eerste N Waarnemings word om skattings van die aanvanklike outoregressiewe lags bereken. In hierdie geval, die ontleding begin met waarneming N 1. Byvoorbeeld: Jy kan die AR makro gebruik om 'n outoregressiewe model toe te pas om die endogene veranderlike, in plaas van om die foutterm, deur gebruik te maak van die opsie TYPEV. Byvoorbeeld, as jy wil die vyf afgelope lags van Y toe te voeg tot die vergelyking in die vorige voorbeeld, jy kan AR gebruik om die parameters te genereer en loop deur die gebruik van die volgende stellings: Die voorafgaande stellings te genereer die uitset in Figuur 18.60. Figuur 18.60 LYS Opsie Uitset vir 'n AR model van Y Hierdie model voorspel Y as 'n lineêre kombinasie van X1, X2, 'n onderskep, en die waardes van Y in die mees onlangse vyf periodes. Onbeperkte vector-motor regressie Om die fout terme van 'n stel vergelykings as 'n vektor outoregressiewe proses te modelleer, gebruik die volgende vorm van die AR makro na die vergelykings: Die processname waarde is 'n naam wat jy verskaf vir AR om te gebruik in die maak van name vir die outoregressiewe grense. Jy kan die AR makro gebruik om verskillende AR prosesse vir verskillende stelle vergelykings model deur gebruik te maak van verskillende proses name vir elke stel. Die naam proses verseker dat die veranderlike name wat uniek is. Gebruik 'n kort processname waarde vir die proses as parameter ramings geskryf moet word om 'n uitset datastel. Die AR makro probeer parameter name minder as of gelyk aan agt karakters bou, maar dit is beperk deur die lengte van processname. wat gebruik word as 'n voorvoegsel vir die AR parameter name. Die variablelist waarde is die lys van endogene veranderlikes vir die vergelykings. Byvoorbeeld, veronderstel dat foute vir vergelykings Y1, Y2, en Y3 gegenereer deur 'n tweede-orde vektor outoregressiewe proses. wat die volgende vir Y1 en soortgelyke kode vir Y2 en Y3 genereer: Slegs die voorwaardelike kleinste kwadrate (MCLS of MCLS n) metode kan gebruik word vir vektor prosesse Jy kan die volgende stellings gebruik. Jy kan ook dieselfde vorm met beperkings wat die koëffisiëntmatriks 0 by uitgesoekte lags gebruik. Byvoorbeeld, die volgende stellings pas 'n derde-orde vektor proses om die vergelyking foute met al die koëffisiënte op lag 2 beperk tot 0 en met die koëffisiënte op lags 1 en 3 onbeperkte: Jy kan die drie reekse Y1Y3 as 'n vektor outoregressiewe proses te modelleer in die veranderlikes in plaas van in die foute deur die gebruik van die opsie TYPEV. As jy wil Y1Y3 model as 'n funksie van die verlede waardes van Y1Y3 en 'n paar eksogene veranderlikes of konstantes, kan jy AR gebruik om die state vir die lag terme te genereer. Skryf 'n vergelyking vir elke veranderlike vir die nonautoregressive deel van die model, en dan bel AR met die opsie TYPEV. Byvoorbeeld, kan die nonautoregressive deel van die model 'n funksie van eksogene veranderlikes wees, of dit kan onderskep parameters wees. As daar geen eksterne komponente om die vector-motor regressie model, insluitende geen afsnitte, dan wys nul tot elk van die veranderlikes. Daar moet 'n opdrag aan elkeen van die veranderlikes voor AR genoem. Hierdie voorbeeld modelle die vektor Y (Y1 Y2 Y3) as 'n lineêre funksie net van sy waarde in die vorige twee periodes en 'n wit geraas fout vektor. Die model het 18 (3 3 3 3) parameters. Sintaksis van die AR Makro Daar is twee gevalle van die sintaksis van die AR makro. Wanneer beperkings op 'n vektor AR proses nie nodig, die sintaksis van die AR makro het die algemene vorm spesifiseer 'n voorvoegsel vir AR om te gebruik in die bou van name van veranderlikes wat nodig is om die AR proses te definieer. As die endolist nie gespesifiseer word nie, die endogene lys standaard te noem. wat moet die naam van die vergelyking waarna die AR fout proses toegepas moet word nie. Die naam mag nie meer as 32 karakters. is aan die orde van die AR proses. spesifiseer die lys van vergelykings waarna die AR proses toegepas moet word. Indien meer as een naam word gegee, is 'n onbeperkte vektor proses geskep met die strukturele residue van al die vergelykings ingesluit as voorspellers in elk van die vergelykings. As nie gespesifiseer, verstek na endolist naam. spesifiseer die lys van sloerings waarteen die AR terme is om by te voeg. Die koëffisiënte van die terme op lags nie gelys is ingestel op 0. Al die genoteerde lags moet minder as of gelyk aan nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, die laglist standaard vir alle lags 1 deur nlag. spesifiseer die skatting metode om te implementeer. Geldige waardes van M is CLS (voorwaardelike kleinste kwadrate beramings), ULS (onvoorwaardelike kleinste kwadrate beramings), en ML (maksimum waarskynlikheid ramings). MCLS is die standaard. Slegs MCLS toegelaat wanneer meer as een vergelyking gespesifiseer. Die ULS en ML metodes word nie ondersteun nie vir vektor AR modelle deur AR. bepaal dat die AR proses toegepas moet word om die endogene veranderlikes hulself in plaas van om die strukturele residue van die vergelykings. Beperkte vector-motor regressie Jy kan beheer wat parameters ingesluit in die proses, die beperking van tot 0 diegene parameters wat jy nie in te sluit. In die eerste plek gebruik AR met die opsie eerbiedig die veranderlike lys verklaar en die dimensie van die proses te definieer. Dan gebruik addisionele AR oproepe na terme vir geselekteerde vergelykings met geselekteerde veranderlikes by sekere lags genereer. Byvoorbeeld, die fout vergelykings geproduseer is soos volg: Hierdie model stel dat die foute vir Y1 afhang van die foute van beide Y1 en Y2 (maar nie Y3) by beide lags 1 en 2, en dat die foute vir Y2 en Y3 afhang die vorige foute vir al drie veranderlikes, maar slegs op lag 1. AR Makro Sintaksis vir Beperkte vector AR 'n alternatiewe gebruik van AR toegelaat word om beperkings op 'n vektor AR proses te lê deur AR 'n paar keer 'n beroep op verskillende AR terme spesifiseer en loop vir verskillende vergelykings. Die eerste oproep het die algemene vorm spesifiseer 'n voorvoegsel vir AR om te gebruik in die bou van name van veranderlikes wat nodig is om die vektor AR proses te definieer. spesifiseer die einde van die AR proses. spesifiseer die lys van vergelykings waarna die AR proses toegepas moet word. bepaal dat AR is nie om die AR proses te genereer, maar is om te wag vir verdere inligting wat in later AR oproepe vir die gelyknamige waarde. Die daaropvolgende oproepe het die algemene vorm is dieselfde as in die eerste oproep. spesifiseer die lys van vergelykings waarna die spesifikasies in hierdie AR oproep is wat toegepas moet word. Slegs name wat in die endolist waarde van die eerste oproep vir die naam waarde kan verskyn in die lys van vergelykings in eqlist. spesifiseer die lys van vergelykings wie uitgestel strukturele residue is om ingesluit te word as voorspellers in die vergelykings in eqlist. Slegs name in die endolist van die eerste oproep vir die naam waarde kan verskyn in varlist. As nie gespesifiseer, verstek na varlist endolist. spesifiseer die lys van sloerings waarteen die AR terme is om by te voeg. Die koëffisiënte van die terme op lags nie gelys is ingestel op 0. Al die genoteerde lags moet minder as of gelyk aan die waarde van nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, verstek laglist al lags 1 deur nlag. Die MA Makro Die SAS makro MA genereer programmering state vir PROC model vir die verskuiwing-gemiddelde modelle. Die MA makro is deel van SAS / ETS sagteware, en geen spesiale opsies is nodig om die makro gebruik. Die bewegende gemiddelde fout proses toegepas kan word om die strukturele vergelyking foute. Die sintaksis van die MA makro is dieselfde as die AR makro behalwe daar is geen argument plekke. Wanneer jy die MA en AR makros gekombineer, moet die MA makro die AR makro volg. Die volgende SAS / IML state te produseer 'n ARMA (1, (1 3)) fout proses en stoor dit in die datastel MADAT2. Die volgende PROC MODEL state word gebruik om die parameters van hierdie model skat met behulp van maksimum waarskynlikheid fout struktuur: die skat van die parameters wat deur hierdie lopie word in Figuur 18.61. Figuur 18.61 Beramings van 'n ARMA (1, (1 3)) Proses Daar is twee gevalle van die sintaksis vir die MA makro. Wanneer beperkings op 'n vektor MA proses nie nodig, die sintaksis van die MA makro het die algemene vorm spesifiseer 'n voorvoegsel vir MA om te gebruik in die bou van name van veranderlikes wat nodig is om die MA proses te definieer en is die standaard endolist. is aan die orde van die MA-proses. spesifiseer die vergelykings waarna die MA proses toegepas moet word. Indien meer as een naam word gegee, is CLS skatting gebruik vir die vektor proses. spesifiseer die lags waarteen die MA terme is om by te voeg. Al die genoteerde lags moet minder as of gelyk aan nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, die laglist standaard vir alle lags 1 deur nlag. spesifiseer die skatting metode om te implementeer. Geldige waardes van M is CLS (voorwaardelike kleinste kwadrate beramings), ULS (onvoorwaardelike kleinste kwadrate beramings), en ML (maksimum waarskynlikheid ramings). MCLS is die standaard. Slegs MCLS toegelaat wanneer meer as een vergelyking wat in die endolist. MA Makro Sintaksis vir Beperkte Vector bewegende gemiddeldes 'n Alternatiewe gebruik van MA toegelaat word om beperkings op 'n vektor MA proses te lê deur 'n paar keer 'n beroep MA verskillende MA terme spesifiseer en loop vir verskillende vergelykings. Die eerste oproep het die algemene vorm spesifiseer 'n voorvoegsel vir MA om te gebruik in die bou van name van veranderlikes wat nodig is om die vektor MA proses te definieer. spesifiseer die einde van die MA-proses. spesifiseer die lys van vergelykings waarna die MA proses toegepas moet word. bepaal dat MA is nie tot die MA proses te genereer, maar is om te wag vir verdere inligting wat in later MA oproepe vir die gelyknamige waarde. Die daaropvolgende oproepe het die algemene vorm is dieselfde as in die eerste oproep. spesifiseer die lys van vergelykings waarna die spesifikasies in hierdie MA oproep is wat toegepas moet word. spesifiseer die lys van vergelykings wie uitgestel strukturele residue is om ingesluit te word as voorspellers in die vergelykings in eqlist. spesifiseer die lys van sloerings waarteen die MA terme te added.1 kritiese wyse alfabet Inc39s Eie Ry motors sal Mirror Apple Inc.39s Projek Titan 10 Oktober 2015 by 11:23 Na dekades van algemene stase, die globale motorbedryf uiteindelik blyk gereed om ten minste een groot paradigmaskuif in die komende dekade ondergaan danksy in geen klein deel aan die dreigende mededingende dreigemente van-tegnologie georiënteerde toetreders soos alfabet (NASDAQ: GOOG) (NASDAQ: GOOGL). Apple (NASDAQ: AAPL). en Tesla. En selfs al is potensieel spel-veranderende produkte soos dié van appels Projek Titan en alfabette outonome motors bly jare weg van die rubber eintlik aan die pad (woordspeling bedoel), beleggers en die media is stadig maar seker besig om 'n duideliker sin van elke maatskappy se individuele strategieë. Hoewel Appels en alfabette poog om die motor bedryf se spreekwoordelike boot verskil in sommige opsigte rock, het ons onlangs geleer hierdie twee pogings waarskynlik deel een van die belangrikste kenmerk hul onderskeie beleggers sal liefhê uitkontraktering vervaardiging. Alfabet breek grond in smart motors Die maatskappy nou bekend alfabet, wat die meeste mense waarskynlik steeds 'n beroep Google, het onlangs 'n voorskou van sy self-ry motors vir uitgesoekte lede van die media, en die insigte verkry 'n aantal belangrike datapunte verskaf vir sy beleggers. Dis interessant dat die maatskappy ingesluit sy intern ontwikkel slim-motor prototipes as deel van die media vandag, teenoor die opgevoerde Lexuses dit voorheen gebruik om sy outonome bestuur tegnologie te toets. Hoewel alfabette motors bly prototipes, die maatskappy verskyn daarop uit, insluitend wat hulle glo 'n paar gemerk verbeterings aan tradisionele motor ontwerpe wees. Meer as 'n jaar gelede, het die maatskappy is wat uit hoe dit die materiaal en struktuur van die voorkant van sy prototipes het opgeknap, ten gunste van 'n samedrukbare skuim voorste buffer en 'n groot, hoogs buigsame voorruit. Hulle beweer hierdie nuwe ontwerp sal beter mense te beskerm in die geval van 'n ongeluk, terwyl dit ook 'n beter beskerm ander padgebruikers soos voetgangers en fietsers. Eie ry motor direkteur Chris Urmson het ook aangedui dat die maatskappy beplan om sy motors te beperk snelhede slegs 25 km om 'n bykomende laag van veiligheid te skep vir mense binne en buite die voertuig. Oorweging alfabette duidelik strewe om die hele motor ervaring op te knap, moet dit kom as geen verrassing dat die maatskappy weer gebreek met konvensie in die skep van die motors interieurs. Trouens, diegene verwag min oor die in-motor ervaring te verander dalk nie erken alfabette self-ry motors vir 'n behoorlike motors. Die maatskappy afgebrand die binnekant, die verwydering van die stuurkolom, versneller, gas pedaal, en agter en kantspieëls - net 'n paar van die groot veranderinge te noem. Hierdie gebrek aan in die motor warboel en ry verantwoordelikheid die deur oopmaak vir die bestuurders en passasiers in veel meer moeite werd aktiwiteite betrokke te raak soos op die Internet met behulp van Google se Chrome leser, of om hulle op Gmail rekeninge, of kyk na video's op YouTube. Alfabet isnt dit te doen vir gratis, na alles. In terme van veiligheid in die afwesigheid van 'n opgeleide bestuurder, Urmson aangedui dat die maatskappy back-up enjin en remstelsels in sy motor ontwerp. So as iets verkeerd sonder passasiers in staat is om beheer te neem gaan, die motors self sal in staat wees om voort te gaan ry asof niks gebeur het nie. Algehele, dit is 'n dwingende visie, hoewel 'n mens wat jare weg van eintlik wat op die pad bly. Maar ewe belangrik om die funksies in sy prototipes, alfabet gedeel ook 'n belangrike stuk inligting oor sy sakemodel wat goed weerspieël Appels benadering tot motor maak met appels Projek Titan. Vervaardiging hoër marges Volgens onlangse verslagdoening van Re / Kode. Alfabet het bevestig dat dit nie die geval is van plan om sy outonome ry motors produseer op sy eie. Dit stem ooreen met Appels al-maar-verseker strategie. soortgelyk aan sy produk besetting van uitkontraktering sy toestelle vervaardiging ten einde sy marge profiel te handhaaf. Ive gebruik hierdie term in vorige artikels oor die onderwerp, want die motor besigheid is 'n berugte lae-marge ruimte vir selfs die grootste maatskappye. Vir konteks, Apple en Google gegenereer 21.5 en 21, onderskeidelik, in netto inkomste marges laaste kwartaal. Terwyl die verskuiwing in die motor-mark bied 'n werklik massiewe inkomste geleentheid vir die hou van Apple en alfabet, dit tot voordeel van hul aandeelhouers veel minder as wat vars inkomste betekenisvol verswak óf maatskappy se winsmarges. Soos meer fokus verskuif na begrip en ontleding van Appels Projek Titan, 'n paar van die skerpste breine in die besigheid het aangevoer dat Apple kon, en sal waarskynlik in staat wees om 'n meer winsgewende motor sakemodel skep in baie dieselfde manier waarop dit gedoen in sy verbruiker elektronika besigheid. Apple ontwerp en verkry die aanbod-ketting materiaal wat gebruik word in die vervaardiging van sy iDevices, maar kontrakteer die lae-marge vergadering gedeelte van die besigheid van 'n aantal derde party vervaardiging vennote soos Foxconn. of Samsung en Taiwan Halfgeleier vir sy A-reeks skyfies. Die motorbedryf nie die geval enige grootskaalse vergadering maatskappye in dieselfde trant as die bogenoemde name, maar Apple en alfabet het genoeg kapitaal op hul balansstate om nuwe plante te finansier as hulle 'n vennoot met die nodige tegniese kennis kan vind. Die sleutel implikasie in dit alles is dat Apple en alfabet beide verskyn om saam te werk om te breek met motorbedryf konvensies om sodoende 'n groter deel van die winste en waarde te vang uit hul onderskeie motor projekte. Terwyl beide maatskappye projekte jare bly in wording, alfabette erkenning dat, soos Apple, beteken dit nie van plan is om sy eie motors te maak, moet musiek wees aan sy aandeelhouers ore. Andrew Tonner besit aandele van Apple. Die Motley Fool besit aandele van en beveel alfabet (A-aandele), Alfabet (C aandele), Apple, en Tesla Motors. Probeer enige van ons dwase nuusbrief dienste gratis vir 30 dae. Ons Fools kan nie almal hou dieselfde menings, maar ons almal is van mening dat die oorweging van 'n wye verskeidenheid van insigte maak ons beter beleggers. Die Motley Fool 'n bekendmaking beleid .2.1 bewegende gemiddelde modelle (MA modelle) tydreeksmodelle bekend as ARIMA modelle kan die volgende insluit outoregressiewe terme en / of bewegende gemiddelde terme. In Week 1, het ons geleer 'n outoregressiewe term in 'n tydreeks model vir die veranderlike x t is 'n vertraagde waarde van x t. Byvoorbeeld, 'n lag 1 outoregressiewe termyn is x t-1 (vermenigvuldig met 'n koëffisiënt). Hierdie les definieer bewegende gemiddelde terme. 'N bewegende gemiddelde termyn in 'n tydreeks model is 'n verlede fout (vermenigvuldig met 'n koëffisiënt). Laat (WT omslaan N (0, sigma2w)), wat beteken dat die w t is identies, onafhanklik versprei, elk met 'n normaalverdeling met gemiddelde 0 en dieselfde afwyking. Die 1 ste orde bewegende gemiddelde model, aangedui deur MA (1) is (xt mu wt theta1w) Die 2de orde bewegende gemiddelde model, aangedui deur MA (2) is (xt mu wt theta1w theta2w) Die Q de orde bewegende gemiddelde model , aangedui deur MA (Q) is (xt mu wt theta1w theta2w kolle thetaqw) Nota. Baie handboeke en sagteware programme definieer die model met negatiewe tekens voor die terme. Dit nie die geval verander die algemene teoretiese eienskappe van die model, hoewel dit flip die algebraïese tekens van beraamde koëffisiënt waardes en (unsquared) terme in formules vir ACFs en afwykings. Jy moet jou sagteware kyk om te kontroleer of negatiewe of positiewe tekens is gebruik om korrek te skryf die beraamde model. R gebruik positiewe tekens in sy onderliggende model, soos ons hier doen. Teoretiese Eienskappe van 'n tydreeks met 'n MA (1) Model Let daarop dat die enigste nie-nul waarde in die teoretiese ACF is vir lag 1. Alle ander outokorrelasies is 0. So 'n monster ACF met 'n beduidende outokorrelasie net by lag 1 is 'n aanduiding van 'n moontlike MA (1) model. Vir belangstellende studente, bewyse van hierdie eienskappe is 'n bylae tot hierdie opdragstuk. Voorbeeld 1 Veronderstel dat 'n MA (1) model is x t 10 w t 0,7 w t-1. waar (WT omslaan N (0,1)). So het die koëffisiënt 1 0.7. Die teoretiese ACF gegee word deur 'n plot van hierdie volg ACF. Die plot net aangedui is die teoretiese ACF vir 'n MA (1) met 1 0.7. In die praktyk, 'n monster gewoond gewoonlik verskaf so 'n duidelike patroon. Die gebruik van R, gesimuleerde ons N 100 monster waardes gebruik te maak van die model x t 10 w t 0,7 w t-1 waar w t IID N (0,1). Vir hierdie simulasie, 'n tydreeks plot van die steekproefdata volg. Ons kan nie sê baie van hierdie plot. Die monster ACF vir die gesimuleerde data volg. Ons sien 'n skerp styging in lag 1 gevolg deur die algemeen nie-beduidende waardes vir lags afgelope 1. Let daarop dat die monster ACF kom nie ooreen met die teoretiese patroon van die onderliggende MA (1), en dit is dat al outokorrelasies vir lags afgelope 1 sal wees 0 . 'n ander voorbeeld sou 'n effens verskillende monster ACF hieronder getoon, maar sal waarskynlik dieselfde breë funksies. Theroretical Eienskappe van 'n tydreeks met 'n MA (2) model vir die MA (2) model, teoretiese eienskappe is soos volg: Let daarop dat die enigste nie-nul waardes in die teoretiese ACF is vir lags 1 en 2. outokorrelasies vir hoër lags is 0 . So, 'n monster ACF met 'n beduidende outokorrelasies by lags 1 en 2, maar nie-beduidende outokorrelasies vir hoër lags dui op 'n moontlike MA (2) model. IID N (0,1). Die koëffisiënte is 1 0.5 en 2 0.3. Want dit is 'n MA (2), sal die teoretiese ACF nul waardes het net by lags 1 en 2. Waardes van die twee nie-nul outokorrelasies is 'n plot van die teoretiese ACF volg. Soos byna altyd die geval is, monster data gewoond te tree heeltemal so perfek as teorie. Ons gesimuleerde N 150 monster waardes vir die model x t 10 w t 0,5 w t-1 0,3 w t-2. waar w t IID N (0,1). Die tydreekse plot van die data volg. Soos met die tydreeks plot vir die MA (1) voorbeeld van die data, kan nie vir jou sê baie daaruit. Die monster ACF vir die gesimuleerde data volg. Die patroon is tipies vir situasies waar 'n MA (2) model nuttig kan wees. Daar is twee statisties beduidende spykers by lags 1 en 2, gevolg deur nie-beduidende waardes vir ander lags. Let daarop dat as gevolg van steekproeffout, die monster ACF nie die teoretiese patroon presies ooreenstem. ACF vir Algemene MA (Q) Models n eiendom van MA (Q) modelle in die algemeen is dat daar nie-nul outokorrelasies vir die eerste Q lags en outokorrelasies 0 vir alle lags GT q. Nie-uniekheid van verband tussen waardes van 1 en (rho1) in MA (1) Model. In die MA (1) model, vir enige waarde van 1. die wedersydse 01/01 gee dieselfde waarde vir so 'n voorbeeld, gebruik 0,5 vir 1. en gebruik dan 1 / (0,5) 2 vir 1. Jy sal kry (rho1) 0.4 in beide gevalle. Om 'n teoretiese beperking genoem inverteerbaarheid bevredig. Ons beperk MA (1) modelle om waardes met absolute waarde minder as 1. In die voorbeeld net gegee, 1 0.5 sal 'n toelaatbare parameter waarde wees nie, terwyl 1 1 / 0.5 2 nie. Inverteerbaarheid van MA modelle 'n MA-model word gesê omkeerbare te wees indien dit algebraïes gelykstaande aan 'n konvergerende oneindige orde AR model. Bevestig deur die, bedoel ons dat die AR koëffisiënte daal tot 0 as ons terug beweeg in die tyd. Inverteerbaarheid is 'n beperking geprogrammeer in die tyd reeks sagteware wat gebruik word om die koëffisiënte van modelle te skat met MA terme. Dit is nie iets wat ons gaan vir die data-analise. Bykomende inligting oor die inverteerbaarheid beperking vir MA (1) modelle word in die bylaag. Gevorderde teorie Nota. Vir 'n MA (Q) model met 'n bepaalde ACF, daar is net een omkeerbare model. Die noodsaaklike voorwaarde vir inverteerbaarheid is dat die koëffisiënte waardes sodanig dat die vergelyking 1- 1 y. - Q y q 0 het oplossings vir y wat buite die eenheidsirkel val. R-kode vir die voorbeelde in Voorbeeld 1, ons geplot die teoretiese ACF van die model x t 10 w t. 7W t-1. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik word om die teoretiese ACF plot was: acfma1ARMAacf (Mac (0,7), lag. max10) 10 lags van ACF vir MA (1) met theta1 0.7 lags0: 10 skep 'n veranderlike genaamd lags wat wissel van 0 tot 10. plot (lags, acfma1, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (1) met theta1 0.7) abline (H0) voeg n horisontale as om die plot die eerste opdrag bepaal die ACF en slaan dit in 'n voorwerp vernoem acfma1 (ons keuse van naam). Die plot opdrag (die 3de gebod) erwe lags teenoor die ACF waardes vir lags 1 tot 10. Die ylab parameter etikette die y-as en die belangrikste parameter sit 'n titel op die plot. Om te sien die numeriese waardes van die ACF net gebruik die opdrag acfma1. Die simulasie en erwe is gedoen met die volgende opdragte. xcarima. sim (N150, lys (Mac (0,7))) Simuleer N 150 waardes van MA (1) xxc10 voeg 10 tot gemiddelde 10. Simulasie gebreke maak beteken 0. plot (x, typeb, mainSimulated MA (1) data) ACF (x, xlimc (1,10), mainACF vir gesimuleerde steekproefdata) In Voorbeeld 2, ons geplot die teoretiese ACF van die model xt 10 wt 0,5 w t-1 0,3 w t-2. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik was acfma2ARMAacf (Mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (2) met theta1 0.5, theta20.3) abline (H0) xcarima. sim (N150, lys (Mac (0.5, 0.3))) xxc10 plot (x, typeb, hoof Gesimuleerde MA (2) Series) ACF (x, xlimc (1,10), mainACF vir gesimuleerde MA (2) Data) Bylae: Bewys van eiendomme van MA (1) vir belangstellende studente, hier is bewyse vir teoretiese eienskappe van die MA (1) model. Variansie: (teks (xt) teks (mu wt theta1 w) 0 teks (WT) teks (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wanneer h 1, die vorige uitdrukking 1 W 2. Vir enige h 2, die vorige uitdrukking 0 . die rede hiervoor is dat per definisie van onafhanklikheid van die WT. E (w k w j) 0 vir enige k j. Verder, omdat die w t het intussen 0, E (w j w j) E (w j 2) w 2. Vir 'n tydreeks, Pas hierdie resultaat aan die ACF hierbo kry. 'N omkeerbare MA model is die een wat geskryf kan word as 'n oneindige orde AR model wat konvergeer sodat die AR koëffisiënte konvergeer na 0 as ons oneindig terug in die tyd beweeg. Wel demonstreer inverteerbaarheid vir die MA (1) model. Ons het toe plaasvervanger verhouding (2) vir w t-1 in vergelyking (1) (3) (ZT wt theta1 (Z - theta1w) wt theta1z - theta2w) op tydstip t-2. vergelyking (2) word Ons het toe plaasvervanger verhouding (4) vir w t-2 in vergelyking (3) (ZT wt theta1 Z - theta21w wt theta1z - theta21 (Z - theta1w) wt theta1z - theta12z theta31w) As ons voortgaan ( oneindig), sou ons die oneindige orde AR model kry (ZT wt theta1 Z - theta21z theta31z - theta41z kolletjies) Nota egter dat as 1 1, die koëffisiënte die lags van Z vermenigvuldig sal toeneem (oneindig) in grootte as ons terug beweeg in tyd. Om dit te voorkom, moet ons 1 LT1. Dit is die voorwaarde vir 'n omkeerbare MA (1) model. Oneindige Bestel MA model In week 3, goed sien dat 'n AR (1) model kan omgeskakel word na 'n oneindige orde MA model: (xt - mu wt phi1w phi21w kolle phik1 w kolle som phij1w) Hierdie opsomming van verlede wit geraas terme is bekende as die oorsaaklike voorstelling van 'n AR (1). Met ander woorde, x t is 'n spesiale tipe MA met 'n oneindige aantal terme terug gaan in die tyd. Dit is 'n oneindige orde MA of MA () genoem. 'N Eindige orde MA is 'n oneindige orde AR en enige eindige orde AR is 'n oneindige orde MA. Onthou in Week 1, het ons opgemerk dat 'n vereiste vir 'n stilstaande AR (1) is dat 1 LT1. Kom ons bereken die Var (x t) met behulp van die oorsaaklike verteenwoordiging. Die laaste stap gebruik 'n basiese feit oor meetkundige reeks wat vereis (phi1lt1) anders sal die reeks divergeer. Navigation8.4 Moving gemiddelde modelle eerder as om verby waardes van die voorspelling veranderlike in 'n regressie, 'n bewegende gemiddelde model gebruik afgelope voorspelling foute in 'n regressie-agtige model. y c et theta e theta e kolle theta e, waar et is wit geraas. Ons noem dit 'n MA (Q) model. Natuurlik, ons het nie die waardes van et waarneem, so dit is nie regtig regressie in die gewone sin. Let daarop dat elke waarde van yt gesien kan word as 'n geweegde bewegende gemiddelde van die afgelope paar voorspel foute. Maar bewegende gemiddelde modelle moet nie verwar word met bewegende gemiddelde smoothing ons in Hoofstuk 6. 'n bewegende gemiddelde model bespreek word gebruik vir die voorspelling van toekomstige waardes, terwyl bewegende gemiddelde smoothing word gebruik vir die bepaling van die tendens-siklus van verlede waardes wees. Figuur 8.6: Twee voorbeelde van data uit bewegende gemiddelde modelle met verskillende parameters. Links: MA (1) met y t 20e t 0.8e t-1. Regs: MA (2) met y t e t-e t-1 0.8e t-2. In beide gevalle, is e t normaalverdeelde wit geraas met gemiddelde nul en variansie een. Figuur 8.6 toon 'n mate van data uit 'n MA (1) model en 'n MA (2) model. Die verandering van die parameters theta1, kolle, thetaq resultate in verskillende tyd reeks patrone. Soos met outoregressiemodelle, sal die afwyking van die term fout et net verander die skaal van die reeks, nie die patrone. Dit is moontlik om 'n stilstaande AR (p) model as 'n MA (infty) model skryf. Byvoorbeeld, met behulp van herhaalde vervanging, kan ons hierdie bewys vir 'n AR (1) model: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext einde verstande -1 Dit phi1 Dit 1, sal die waarde van phi1k kleiner te kry as k groter word. So uiteindelik kry ons yt et phi1 e phi12 e phi13 e cdots, 'n MA (infty) proses. Die omgekeerde gevolg het as ons 'n paar beperkinge op te lê op die MA parameters. Toe die MA-model is omkeerbaar genoem. Dit wil sê, dat ons 'n omkeerbare MA (Q) proses as 'n AR (infty) proses kan skryf. Omkeerbare modelle is nie net om ons in staat stel om van MA modelle om modelle AR. Hulle het ook 'n paar wiskundige eienskappe wat maak dit makliker om te gebruik in die praktyk. Die inverteerbaarheid beperkings is soortgelyk aan die stasionariteit beperkings. Vir 'n MA (1) model: -1lttheta1lt1. Vir 'n MA (2) model: -1lttheta2lt1, theta2theta1 GT-1, theta1 - theta2 Dit 1. Meer ingewikkelde voorwaardes hou vir qge3. Weereens, sal R sorg van hierdie beperkings wanneer die beraming van die models. Moving Gemiddeld - MA afbreek bewegende gemiddelde - MA As SMA voorbeeld, kyk na 'n sekuriteit met die volgende sluitingsdatum pryse meer as 15 dae: Week 1 (5 dae) 20, 22 , 24, 25, 23 Week 2 (5 dae) 26, 28, 26, 29, 27 Week 3 (5 dae) 28, 30, 27, 29, 28 A 10-dag MA sou gemiddeld uit die sluitingsdatum pryse vir die eerste 10 dae as die eerste data punt. Die volgende data punt sal daal die vroegste prys, voeg die prys op dag 11 en neem die gemiddelde, en so aan, soos hieronder getoon. Soos voorheen verduidelik, MA lag huidige prys aksie omdat dit gebaseer is op vorige pryse hoe langer die tydperk vir die MA, hoe groter is die lag. So sal 'n 200-dag MA 'n veel groter mate van lag as 'n 20-dag MA het omdat dit pryse vir die afgelope 200 dae bevat. Die lengte van die MA om te gebruik, hang af van die handel doelwitte, met korter MA gebruik vir 'n kort termyn handel en langer termyn MA meer geskik vir 'n lang termyn beleggers. Die 200-dag MA word wyd gevolg deur beleggers en handelaars, met onderbrekings bo en onder hierdie bewegende gemiddelde beskou as belangrike handel seine wees. MA ook mee belangrik handel seine op hul eie, of wanneer twee gemiddeldes kruis. 'N stygende MA dui daarop dat die sekuriteit is in 'n uptrend. terwyl 'n dalende MA dui daarop dat dit in 'n verslechtering neiging. Net so, is opwaartse momentum bevestig met 'n lomp crossover. wat gebeur wanneer 'n korttermyn-MA kruisies bo 'n langer termyn MA. Afwaartse momentum bevestig met 'n lomp crossover, wat plaasvind wanneer 'n kort termyn MA kruisies onder 'n langer termyn MA.
No comments:
Post a Comment